Maternal endotoxin exposure attenuates allergic airway disease in infant rats

Author:

Cao Lei1,Wang Jinxia1,Zhu Yingchun1,Tseu Irene1,Post Martin12

Affiliation:

1. Lung Biology Research Group, Physiology and Experimental Medicine Program, The Hospital for Sick Children Research Institute, Toronto; and

2. Departments of Pediatrics and Physiology, University of Toronto, Toronto, Canada

Abstract

Prenatal exposures to immunogenic stimuli, such as bacterial LPS, have shown to influence the neonatal immune system and lung function. However, no detailed analysis of the immunomodulatory effects of LPS on postnatal T helper cell differentiation has been performed. Using a rat model, we investigated the effect of prenatal LPS exposure on postnatal T cell differentiation and experimental allergic airway disease. Pregnant rats were injected with LPS on day 20 and 21 (term = 22 days). Some of the offspring were sensitized and challenged with ovalbumin. Positive control animals were placebo exposed to saline instead of LPS, whereas negative controls were sensitized with saline. Expression of T cell-related transcription factors and cytokines was quantified in the lung, and airway hyperresponsiveness was measured. Prenatal LPS exposure induced a T helper 1 (TH1) immune milieu in the offspring of rats [i.e., increased T-bet and TH1 cytokine expression while expression of TH2-associated transcription factors (GATA3 and STAT6) and cytokines was decreased]. Prenatal LPS exposure did not trigger TH17 cell differentiation in the offspring. Furthermore, prenatal LPS exposure reduced ovalbumin-induced (TH2-mediated) airway inflammation, eosinophilia, and airway responsiveness. Thus, in utero exposure to endotoxin promotes a TH1 immune environment, which suppresses the development of allergic airway disease later in life.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3