Affiliation:
1. Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas
Abstract
Surfactant protein B (SP-B) is essential for the surface tension-lowering function of pulmonary surfactant. Surfactant dysfunction and reduced SP-B levels are associated with elevated nitric oxide (NO) in inflammatory lung diseases, such as acute respiratory distress syndrome. We previously found that NO donors decreased SP-B expression in H441 and MLE-12 lung epithelial cells by reducing SP-B promoter activity. In this study, we determined the roles of DNA elements and interacting transcription factors necessary for NO inhibition of SP-B promoter activity in H441 cells. We found that the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) decreased SP-B promoter thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3 (HNF-3), and Sp1 binding activities but increased activator protein 1 (AP-1) binding activity. DETA-NO decreased TTF-1, but not Sp1, levels, suggesting that reduced TTF-1 expression contributes to reduced TTF-1 binding activity. Lack of effect on Sp1 levels suggested that DETA-NO inhibits Sp1 binding activity per se. Overexpression of Sp1, but not TTF-1, blocked DETA-NO inhibition of SP-B promoter activity. DETA-NO inhibited SP-B promoter induction by exogenous TTF-1 without altering TTF-1 levels. DETA-NO decreased TTF-1 mRNA levels and gene transcription rate, indicating that DETA-NO inhibits TTF-1 expression at the transcriptional level. We conclude that NO inhibits SP-B promoter by decreasing TTF-1, Sp1, and HNF-3 binding activities and increasing AP-1 binding activity. NO inhibits TTF-1 levels and activity to decrease SP-B expression. NO inhibition of SP-B expression could be a mechanism by which surfactant dysfunction occurs in inflammatory lung diseases.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology