Pulmonary artery smooth muscle cell proliferation and migration in fetal lambs acclimatized to high-altitude long-term hypoxia: role of histone acetylation

Author:

Yang Qiwei1,Lu Ziyan1,Ramchandran Ramaswamy1,Longo Lawrence D.2,Raj J. Usha13

Affiliation:

1. Departments of Pediatrics, University of Illinois at Chicago;

2. Center for Perinatal Biology, Loma Linda University, Loma Linda, California; and

3. Children's Hospital, University of Illinois, University of Illinois Hospital and Health Sciences System

Abstract

High-altitude long-term hypoxia (LTH) is known to induce pulmonary arterial smooth muscle cell (PASMC) proliferation in the fetus, leading to pulmonary arterial remodeling and pulmonary hypertension of the newborn. The mechanisms underlying these conditions remain enigmatic however. We hypothesized that epigenetic alterations in fetal PASMC induced by high-altitude LTH may play an important role in modulating their proliferation during pulmonary arterial remodeling. To test this hypothesis, we have analyzed epigenetic alterations in the pulmonary vasculature of fetal lambs exposed to high-altitude LTH [pregnant ewes were kept at 3,801 m altitude from ∼40 to 145 days gestation] or to sea level atmosphere. Intrapulmonary arteries were isolated, and fetal PASMC were cultured from both control and LTH fetuses. Compared with controls, in LTH fetus pulmonary arteries measurements of histone acetylation and global DNA methylation demonstrated reduced levels of global histone 4 acetylation and DNA methylation, accompanied by the loss of the cyclin-dependent kinase inhibitor p21. Treatment of LTH fetal PASMCs with histone deacetylase (HDAC) inhibitor trichostatin A decreased their proliferation rate, in part because of altered expression of p21 at both RNA and protein level. In PASMC of LTH fetuses, HDAC inhibition also decreased PDGF-induced cell migration and ERK1/2 activation and modulated global DNA methylation. On the basis of these observations, we propose that epigenetic alterations (reduced histone acetylation and DNA methylation) caused by chronic hypoxia leads to fetal PASMC proliferation and vessel remodeling associated with vascular proliferative disease and that this process is regulated by p21.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3