Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle

Author:

Dai Jiazhen M.1,Kuo Kuo-Hsing1,Leo Joyce M.1,van Breemen Cornelis1,Lee Cheng-Han1

Affiliation:

1. The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada

Abstract

Stimulation of the tracheal muscle bundle by acetylcholine (ACh) results in the generation of asynchronous repetitive Ca2+ waves (ACW) in intact tracheal smooth muscle (TSM) cells. We showed previously that ACW underlie cholinergic excitation-contraction coupling in porcine TSM and that Ca2+ entry through the L-type voltage-gated Ca2+ channel (VGCC) contributes partially to maintenance of the ACW. However, the mechanism of the ACW remains undefined. In this study, we pharmacologically characterized the mechanism of ACh-induced ACW in the intact porcine tracheal muscle bundle. We found that inhibition of receptor-operated channels/store-operated channels (ROC/SOC) by SKF-96365 completely abolished the nifedipine-insensitive component of ACh-mediated ACW and tonic contraction. Blockade of Na+/Ca2+ exchange with KB-R7943 or 2′,4′-dichlorobenzamil or removal of extracellular Na+ resulted in nearly complete inhibition of the nifedipine-insensitive component of ACh-mediated ACW and tonic contraction. Inhibition of the sarco(endo)plasmic reticulum Ca2+-ATPase by cyclopiazonic acid abolished the ongoing ACW. Application of 2-aminoethoxydiphenyl borate (2-APB) or xestospongin C to inhibit the inositol 1,4,5-trisphosphate-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels produced no effect on ACh-mediated ACW and tonic contraction. However, pretreatment with caffeine or ryanodine inhibited ACh-induced ACW. Furthermore, application of procaine or tetracaine prevented the generation and abolished the ongoing ACh-mediated ACW and tonic contraction. Collectively, these results indicate that the ACh-stimulated ACW in porcine TSM are produced by repetitive cycles of Ca2+ release from SR through 2-APB- and xestospongin C-insensitive Ca2+ release channels, and plasmalemmal Ca2+ entry involving reverse-mode Na+/Ca2+ exchange, ROC/SOC, and L-type VGCC is required to refill the SR via SERCA to support the ongoing ACW.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3