Thrombin-mediated increases in cytosolic [Ca2+] involve different mechanisms in human pulmonary artery smooth muscle and endothelial cells

Author:

Sacks Richard S.,Firth Amy L.,Remillard Carmelle V.,Agange Negin,Yau Jocelyn,Ko Eun A.,Yuan Jason X.-J.

Abstract

Thrombin is a procoagulant inflammatory agonist that can disrupt the endothelium-lumen barrier in the lung by causing contraction of endothelial cells and promote pulmonary cell proliferation. Both contraction and proliferation require increases in cytosolic Ca2+ concentration ([Ca2+]cyt). In this study, we compared the effect of thrombin on Ca2+ signaling in human pulmonary artery smooth muscle (PASMC) and endothelial (PAEC) cells. Thrombin increased the [Ca2+]cyt in both cell types; however, the transient response was significantly higher and recovered quicker in the PASMC, suggesting different mechanisms may contribute to thrombin-mediated increases in [Ca2+]cyt in these cell types. Depletion of intracellular stores with cyclopiazonic acid (CPA) in the absence of extracellular Ca2+ induced calcium transients representative of those observed in response to thrombin in both cell types. Interestingly, CPA pretreatment significantly attenuated thrombin-induced Ca2+ release in PASMC; this attenuation was not apparent in PAEC, indicating that a PAEC-specific mechanism was targeted by thrombin. Treatment with a combination of CPA, caffeine, and ryanodine also failed to abolish the thrombin-induced Ca2+ transient in PAEC. Notably, thrombin-induced receptor-mediated calcium influx was still observed in PASMC after CPA pretreatment in the presence of extracellular Ca2+. Ca2+ oscillations were triggered by thrombin in PASMC resulting from a balance of extracellular Ca2+ influx and Ca2+ reuptake by the sarcoplasmic reticulum. The data show that thrombin induces increases in intracellular calcium in PASMC and PAEC with a distinct CPA-, caffeine-, and ryanodine-insensitive release existing only in PAEC. Furthermore, a dynamic balance between Ca2+ influx, intracellular Ca2+ release, and reuptake underlie the Ca2+ transients evoked by thrombin in some PASMC. Understanding of such mechanisms will provide an important insight into thrombin-mediated vascular injury during hypertension.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3