Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice

Author:

Poole Jill A.,Wyatt Todd A.,Oldenburg Peter J.,Elliott Margaret K.,West William W.,Sisson Joseph H.,Von Essen Susanna G.,Romberger Debra J.

Abstract

Organic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs. repetitive dust-induced airway inflammation in mice by intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 wk. Dust exposure resulted in increased bronchoalveolar lavage fluid neutrophils and macrophages after single and repetitive exposures. Lavage fluid TNFα, IL-6, keratinocyte chemoattractant, and macrophage inflammatory protein-2 were significantly increased after single and repetitive dust exposures, but were dampened in 2-wk dust-exposed mice compared with single exposure. Dust exposure induced PKCα and -ε activation in isolated tracheal epithelial cells but were dampened with repetitive exposures. Ex vivo stimulation of alveolar macrophages from 2-wk animals demonstrated reduced cytokine responsiveness and phagocytic ability. Significant lung pathology occurred with development of mixed mononuclear cellular aggregates (T and B lymphocytes, phagocytes) after repetitive dust exposure, a novel observation. Airway hyperresponsiveness to methacholine occurred after single dust exposure but resolved after 2 wk. Collectively, intranasal exposure to DE results in significant lung inflammatory and pathological responses marked by a modulated innate immune response to single and repetitive dust exposures that is associated with PKC activity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3