Mitochondrial DNA variation modulates alveolar development in newborn mice exposed to hyperoxia

Author:

Kandasamy Jegen1,Rezonzew Gabriel1,Jilling Tamas1ORCID,Ballinger Scott2,Ambalavanan Namasivayam1

Affiliation:

1. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama

2. Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Hyperoxia-induced oxidant stress contributes to the pathogenesis of bronchopulmonary dysplasia (BPD) in preterm infants. Mitochondrial functional differences due to mitochondrial DNA (mtDNA) variations are important modifiers of oxidant stress responses. The objective of this study was to determine whether mtDNA variation independently modifies lung development and mechanical dysfunction in newborn mice exposed to hyperoxia. Newborn C57BL6 wild type (C57n/C57mt, C57WT) and C3H/HeN wild type (C3Hn/C3Hmt, C3HWT) mice and novel Mitochondrial-nuclear eXchange (MNX) strains with nuclear DNA (nDNA) from their parent strain and mtDNA from the other—C57MNX (C57n/C3Hmt) and C3HMNX (C3Hn/C57mt)—were exposed to 21% or 85% O2 from birth to postnatal day 14 (P14). Lung mechanics and histopathology were examined on P15. Neonatal mouse lung fibroblast (NMLF) bioenergetics and mitochondrial superoxide (O2) generation were measured. Pulmonary resistance and mitochondrial O2 generation were increased while alveolarization, compliance, and NMLF basal and maximal oxygen consumption rate were decreased in hyperoxia-exposed C57WT mice (C57n/C57mt) versus C57MNX mice (C57n/C3Hmt) and in hyperoxia-exposed C3HMNX mice (C3Hn/C57mt) versus C3HWT (C3Hn/C3Hmt) mice. Our study suggests that neonatal C57 mtDNA-carrying strains have increased hyperoxia-induced hypoalveolarization, pulmonary mechanical dysfunction, and mitochondrial bioenergetic and redox dysfunction versus C3H mtDNA strains. Therefore, mtDNA haplogroup variation-induced differences in mitochondrial function could modify neonatal alveolar development and BPD susceptibility.

Funder

Kaul Pediatric Research Institute

American Thoracic Society

HHS | National Institutes of Health

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3