Mechanisms underlying epithelium-dependent relaxation in rat bronchioles: analogy to EDHF-type relaxation in rat pulmonary arteries

Author:

Kroigaard Christel1,Dalsgaard Thomas1,Simonsen Ulf1

Affiliation:

1. Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark

Abstract

This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small (SKCa) and intermediate (IKCa)-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IKCa and SKCa3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries, respectively. In 5-hydroxytryptamine (1 μM)-contracted bronchioles (828 ± 20 μm, n = 84) and U46619 (0.03 μM)-contracted arteries (720 ± 24 μm, n = 68), NS309 (0.001–10 μM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IKCa channels with charybdotoxin and in bronchioles also by blocking SKCa channels with apamin. Inhibition of cyclooxygenase, nitric oxide synthase, and cytochrome 2C isoenzymes, or blockade of large (BKCa)-conductance calcium-activated potassium channels with iberiotoxin, failed to reduce NS309 relaxation. In contrast to the pulmonary arteries, relaxations to a β2-adrenoceptor agonist, salbutamol, were reduced in bronchioles by removing the epithelium or blocking IKCa and/or SKCa channels. Extracellular K+ (2–20 mM) induced relaxation in both bronchioles and arteries. An inhibitor of Na+-K+-ATPase, ouabain, abolished relaxations to NS309, salbutamol, and K+. These results suggest that IKCa and SKCa3 channels are located in the epithelium of bronchioles and endothelium of pulmonary arteries. Analog to the endothelium-derived hyperpolarizing factor (EDHF)-type relaxation in pulmonary arteries, these channels may be involved in EpDHF-type relaxation of bronchioles caused by epithelial K+ efflux followed by activation of Na+-K+-ATPase in the underlying smooth muscle layer.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3