Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis

Author:

Cabrera Sandra1,Selman Moises2,Lonzano-Bolaños Alfredo2,Konishi Kazuhisa3,Richards Thomas J.3,Kaminski Naftali3,Pardo Annie1

Affiliation:

1. Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF, México;

2. Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” México DF, México; and

3. Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

Abstract

Lung fibrosis is the final result of a large number of disorders and is usually considered an irreversible process. However, some evidence suggests that fibrosis could eventually be reversible. In this study we aimed to document the time-related reversibility of bleomycin-induced lung fibrosis and to examine the gene expression profile associated with its initial progression and subsequent resolution. C57BL/6 mice were instilled with a single dose of bleomycin and euthanized at 1, 4, 8, 12, and 16 wk. Control animals received an equal volume of saline. Lung fibrosis was examined by morphology and hydroxyproline content and the transcriptional signature by gene microarray analysis. Our results showed that bleomycin-injured mice developed prominent inflammation at 1 wk, followed by fibrosis that peaked at 2 mo. Then fibrosis resolved until lungs displayed almost normal architecture at 4 mo. Genomewide transcriptional profiling revealed 533 significantly changed genes. Self-organizing maps analysis of these genes identified four clusters based on the temporal pattern of gene expression. Clusters 1 and 2 contained genes upregulated during the inflammatory and fibrotic response and were enriched for extracellular matrix-related genes including several collagens, matrix metalloproteinases, and TIMP-1. Cluster 3 identified upregulated genes during the fibrotic response, and cluster 4 contained genes decreased during inflammation and fibrosis that increased during resolution. Most enriched pathways included genes involved in cell cycle and in regulation of transcription. Our findings corroborate the reversibility of bleomycin-induced lung fibrosis and reveal transcriptional signatures that characterize the progression and resolution.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3