Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel

Author:

Devor D. C.1,Singh A. K.1,Frizzell R. A.1,Bridges R. J.1

Affiliation:

1. Department of Cell Biology and Physiology, University of Pittsburgh,Pennsylvania 15261, USA. dd2+@pitt.edu

Abstract

We evaluated the effects of the novel benzimidazolone, 1-ethyl-2-benzimidazolinone (1-EBIO), on Cl- secretion across T84 monolayers. 1-EBIO stimulated a sustained Cl- secretory response at a half-maximal effective concentration of 490 microM. Charybdotoxin (CTX) inhibited the 1-EBIO-induced short-circuit current (Isc) with an inhibitory constant (Ki) of 3.6 nM, whereas 293B, an inhibitor of adenosine 3',5'-cyclic monophosphate-activated K+ channels, had no effect on the current induced by 1-EBIO. In contrast, CTX failed to inhibit the 293B-sensitive forskolin-induced Isc. The above results suggested that 1-EBIO may be activating the basolateral membrane Ca(2+)-dependent K+ channel (KCa) in these cells. This was further confirmed using nystatin to permeabilize the apical membrane in the presence of a mucosa-to-serosa K+ gradient and determining the effects of 1-EBIO on the basolateral K+ current (IK). Under these conditions, 1-EBIO induced a large increase in IK that was blocked by CTX. In membrane vesicles prepared from T84 cells, 1-EBIO stimulated 86Rb+ uptake in a CTX-sensitive manner; the Ki for inhibition by CTX was 3.5 nM. Similar to our intact monolayer studies, this 86Rb+ uptake was not blocked by 293B. The effects of 1-EBIO on the KCa in T84 cells was determined in excised inside-out patches. 1-EBIO (100 microM) increased the product of the number of channels and the open channel probability from 0.09 +/- 0.03 to 1.17 +/- 0.27 (n = 8); this effect on KCa activity required a minimal level of free Ca2+. Similar to its effect on T84 cells, 1-EBIO stimulated a sustained Cl- secretory current in rat colonic epithelium, which was partially blocked by CTX. Finally, 1-EBIO stimulated a sustained Cl- secretory response in primary cultures of murine tracheal epithelium. We conclude that the benzimidazolone, 1-EBIO, stimulates Cl- secretion in secretory epithelia via the direct activation of a Kca. 1-EBIO is the first pharmacological opener of this important class of epithelial K+ channels to be identified.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potentiation of BKCa channels by cystic fibrosis transmembrane conductance regulator correctors VX-445 and VX-121;Journal of Clinical Investigation;2024-07-02

2. Intracellular acidity impedes KCa3.1 activation by Riluzole and SKA-31;Frontiers in Pharmacology;2024-04-04

3. Kca3.1-Related Cellular Signalling Involved in Cancer Proliferation;Cellular Physiology and Biochemistry;2024-03-16

4. Therapeutic Targeting of Potassium Channels;Ion Channels as Targets in Drug Discovery;2024

5. Molecular Glue Discovery: Current and Future Approaches;Journal of Medicinal Chemistry;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3