Wt1-expressing progenitors contribute to multiple tissues in the developing lung

Author:

Cano Elena1,Carmona Rita1,Muñoz-Chápuli Ramón1

Affiliation:

1. Department of Animal Biology, Faculty of Sciences, University of Málaga, Málaga, Spain

Abstract

Lungs develop from paired endodermal outgrowths surrounded by a mesodermal mesenchyme. Part of this mesenchyme arises from epithelial-mesenchymal transition of the mesothelium that lines the pulmonary buds. Previous studies have shown that this mesothelium-derived mesenchyme contributes to the smooth muscle of the pulmonary vessels, but its significance for lung morphogenesis and its developmental fate are still little known. We have studied this issue using the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the developing lungs, Wt1, the Wilms' tumor suppressor gene, is specifically expressed in the embryonic mesothelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP), allowing for colocalization with differentiation markers. Wt1cre-YFP cells were very abundant from the origin of the lung buds to postnatal stages, contributing significantly to pulmonary endothelial and smooth muscle cells, bronchial musculature, tracheal and bronchial cartilage, as well as CD34+ fibroblast-like interstitial cells. Thus Wt1cre-YFP mesenchymal cells show the very same differentiation potential as the splanchnopleural mesenchyme surrounding the lung buds. FSP1+ fibroblast-like cells were always YFP; they expressed the common leukocyte antigen CD45 and were apparently recruited from circulating progenitors. We have also found defects in pulmonary development in Wt1−/− embryos, which showed abnormally fused lung lobes, round-shaped and reduced pleural cavities, and diaphragmatic hernia. Our results suggest a novel role for the embryonic mesothelium-derived cells in lung morphogenesis and involve the Wilms' tumor suppressor gene in the development of this organ.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3