Affiliation:
1. Institute of Anatomy and Cell Biology,
2. Department of Internal Medicine, and
3. Department of Pathology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
Abstract
Enhanced prostanoid generation has been implicated in vascular abnormalities occurring during endotoxemia and sepsis, and the lung is particularly prone to such events. Prostanoids are generated from arachidonic acid (AA) via cyclooxygenase (COX)-1 or -2, both isoenzymes recently demonstrated to be expressed in different lung cell types. Upregulation of COX may underlie the phenomenon that endotoxin [lipopolysaccharide (LPS)]-exposed lungs show markedly enhanced vasoconstrictor responses to secondarily applied stimuli (priming). Isolated rat lungs were perfused with a physiological salt buffer solution in the absence and presence of 1.5% rat plasma and exposed to different concentrations of LPS (1,000 or 10,000 ng/ml) during a 2-h priming period. No change in physiological variables was noted during this period, although enhanced baseline liberation of both thromboxane (Tx) A2and PGI2as well as of tumor necrosis factor (TNF)-α was evident compared with that in control lungs in the absence of LPS. LPS priming caused a significant elevation in AA-induced pulmonary arterial pressure, ventilation pressure, and lung weight gain. Concomitant increased levels of TxA2were found in the buffer perfusate. All changes were largely suppressed by three selective, structurally unrelated COX-2 inhibitors (NS-398, DUP-697, and SC-236) in both buffer- and buffer-plasma-perfused lungs. Anti-TNF-α neutralizing antibodies were ineffective under conditions of buffer perfusion. In the presence of plasma components, manyfold augmented TNF-α generation was noted, and anti-TNF-α antibodies significantly suppressed the increase in ventilation pressure but not in the vascular pressor response and lung edema formation. We conclude that the propensity of LPS-primed lungs to respond with enhanced vasoconstriction, edema formation, and bronchoconstriction to a secondarily applied stimulus proceeds nearly exclusively via COX-2 and increased Tx formation, with TNF-α generation being involved in the change in bronchomotor reactivity in the presence of plasma constituents. In context with recent immunohistological investigations, LPS-induced upregulation of the COX-2-thromboxane synthase axis in vascular and bronchial smooth muscle cells is suggested to underlie these events.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献