Developmental changes in endothelial nitric oxide synthase expression and activity in ovine fetal lung

Author:

Parker Thomas A.1,le Cras Timothy D.2,Kinsella John P.1,Abman Steven H.2

Affiliation:

1. Pediatric Heart Lung Center and Divisions ofNeonatology and

2. Pulmonary and Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262

Abstract

Endothelial nitric oxide (NO) synthase (eNOS) produces NO, which contributes to vascular reactivity in the fetal lung. Pulmonary vasoreactivity develops during late gestation in the ovine fetal lung, during the period of rapid capillary and alveolar growth. Although eNOS expression peaks near birth in the fetal rat, lung capillary and distal air space development occur much later than in the fetal lamb. To determine whether lung eNOS expression in the lamb differs from the timing and pattern reported in the rat, we measured eNOS mRNA and protein by Northern and Western blot analyses and NOS activity by the arginine-to-citrulline conversion assay in lung tissue from fetal, newborn, and maternal sheep. Cellular localization of eNOS expression was determined by immunohistochemistry. eNOS mRNA, protein, and activity were detected in samples from all ages, and eNOS was expressed predominantly in the vascular endothelium. Lung eNOS mRNA expression increases from low levels at 70 days gestation to peak at 113 days and remains high for the rest of fetal life. Newborn eNOS mRNA expression does not change from fetal levels but is lower in the adult ewe. Lung eNOS protein expression in the fetus rises and peaks at 118 days gestation but decreases before birth. eNOS protein expression rises in the newborn period but is lower in the adult. Lung NOS activity also peaks at 118 days gestation in the fetus before falling in late gestation and remaining low in the newborn and adult. We conclude that the pattern of lung eNOS expression in the sheep differs from that in the rat and may reflect species-related differences in lung development. We speculate that the rise in fetal lung eNOS may contribute to the marked lung growth and angiogenesis that occurs during the same period of time.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3