Ovine surfactant protein cDNAs: use in studies on fetal lung growth and maturation after prolonged hypoxemia

Author:

Braems Geert A.123,Yao Li-Juan124,Inchley Kevin124,Brickenden Anne1524,Han Victor K. M.15623,Grolla Allen12,Challis John R. G.237,Possmayer Fred15234

Affiliation:

1. Departments of Obstetrics and Gynaecology,

2. Medical Research Council Group in Fetal and Neonatal Health and Development,

3. Lawson Research Institute, and

4. London Health Sciences Centre, University of Western Ontario, London, Ontario N6A 5A5; and

5. Biochemistry, and

6. Pediatrics,

7. Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8

Abstract

cDNAs for ovine surfactant-associated protein (SP) A, SP-B, and SP-C have been cloned and shown to possess strong similarity to cDNAs for surfactant apoproteins in other species. These reagents were employed to examine the effect of fetal hypoxia on the induction of surfactant apoprotein expression in the fetal lamb. Postnatal lung function is dependent on adequate growth and maturation during fetal development. Insulin-like growth factor (IGF) I and IGF-II, which are present in all fetal tissues studied, possess potent mitogenic and proliferative actions, and their effects can be modulated by IGF-specific binding proteins (IGFBPs). Hypoxia can lead to increases in circulating cortisol and catecholamines that can influence lung maturation. Therefore, the effects of mild hypoxia in chronically catheterized fetal lambs at gestational days 126– 130 and 134– 136 (term 145 days) on the expression of pulmonary surfactant apoproteins and IGFBPs were examined. Mild hypoxia for 48 h resulted in an increase in plasma cortisol that was more pronounced at later gestation, and in these animals, there was a twofold increase in SP-A mRNA. SP-B mRNA levels also increased twofold, but this was not significant. SP-C mRNA was not altered. No significant changes in apoprotein mRNA were observed with the younger fetuses. However, these younger animals selectively exhibited reduced IGFBP-5 mRNA levels. IGF-I mRNA was also reduced at 126–130 days, although this conclusion is tentative due to low abundance. IGF-II levels were not affected at either gestational age. We conclude that these data suggest that mild prolonged fetal hypoxia produces alterations that could affect fetal cellular differentiation early in gestation and can induce changes consistent with lung maturation closer to term.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3