Inhaled carbon monoxide does not cause pulmonary vasodilation in the late-gestation fetal lamb

Author:

Grover Theresa R.1,Rairigh Robyn L.1,Zenge Jeanne P.1,Abman Steven H.1,Kinsella John P.1

Affiliation:

1. Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado 80262

Abstract

As observed with nitric oxide (NO), carbon monoxide (CO) binds and may activate soluble guanylate cyclase and increase cGMP levels in smooth muscle cells in vitro. Because inhaled NO (INO) causes potent and sustained pulmonary vasodilation, we hypothesized that inhaled CO (ICO) may have similar effects on the perinatal lung. To determine whether ICOcan lower pulmonary vascular resistance (PVR) during the perinatal period, we studied the effects of ICOon late-gestation fetal lambs. Catheters were placed in the main pulmonary artery, left pulmonary artery (LPA), aorta, and left atrium to measure pressure. An ultrasonic flow transducer was placed on the LPA to measure blood flow to the left lung. After baseline measurements, fetal lambs were mechanically ventilated with a hypoxic gas mixture (inspired O2fraction < 0.10) to maintain a constant fetal arterial [Formula: see text]. After 60 min (baseline), the lambs were treated with ICO[5–2,500 parts/million (ppm)]. Comparisons were made with INO(5 and 20 ppm) and combined INO(5 ppm) and ICO(100 and 2,500 ppm). We found that ICOdid not alter left lung blood flow or PVR at any of the study doses. In contrast, low-dose INOdecreased PVR by 47% ( P < 0.005). The combination of INOand ICOdid not enhance the vasodilator response to INO. To determine whether endogenous CO contributes to vascular tone in the fetal lung, zinc protoporphyrin IX, an inhibitor of heme oxygenase, was infused into the LPA in three lambs. Zinc protoporphyrin IX had no effect on baseline PVR, aortic pressure, or the pressure gradient across the ductus arteriosus. We conclude that ICOdoes not cause vasodilation in the near-term ovine transitional circulation, and endogenous CO does not contribute significantly to baseline pulmonary vascular tone or ductus arteriosus tone in the late-gestation ovine fetus.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3