Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury

Author:

Moskowitzova Kamila12,Orfany Arzoo12,Liu Kaifeng32,Ramirez-Barbieri Giovanna12,Thedsanamoorthy Jerusha K.4,Yao Rouan4,Guariento Alvise12,Doulamis Ilias P.12,Blitzer David12,Shin Borami12,Snay Erin R.5,Inkster James A. H.52,Iken Khadija32,Packard Alan B.52,Cowan Douglas B.42,Visner Gary A.32,del Nido Pedro J.12,McCully James D.12

Affiliation:

1. Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts

2. Harvard Medical School, Boston, Massachusetts

3. Department of Pulmonary and Respiratory Diseases, Harvard Medical School, Boston, Massachusetts

4. Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts

5. Department of Radiology, Division of Nuclear Medicine and Molecular imaging, Boston Children’s Hospital, Boston, Massachusetts

Abstract

The most common cause of acute lung injury is ischemia-reperfusion injury (IRI), during which mitochondrial damage occurs. We have previously demonstrated that mitochondrial transplantation is an efficacious therapy to replace or augment mitochondria damaged by IRI, allowing for enhanced muscle viability and function in cardiac tissue. Here, we investigate the efficacy of mitochondrial transplantation in a murine lung IRI model using male C57BL/6J mice. Transient ischemia was induced by applying a microvascular clamp on the left hilum for 2 h. Upon reperfusion mice received either vehicle or vehicle-containing mitochondria either by vascular delivery (Mito V) through the pulmonary artery or by aerosol delivery (Mito Neb) via the trachea (nebulization). Sham control mice underwent thoracotomy without hilar clamping and were ventilated for 2 h before returning to the cage. After 24 h recovery, lung mechanics were assessed and lungs were collected for analysis. Our results demonstrated that at 24 h of reperfusion, dynamic compliance and inspiratory capacity were significantly increased and resistance, tissue damping, elastance, and peak inspiratory pressure (Mito V only) were significantly decreased ( P < 0.05) in Mito groups as compared with their respective vehicle groups. Neutrophil infiltration, interstitial edema, and apoptosis were significantly decreased ( P < 0.05) in Mito groups as compared with vehicles. No significant differences in cytokines and chemokines between groups were shown. All lung mechanics results in Mito groups except peak inspiratory pressure in Mito Neb showed no significant differences ( P > 0.05) as compared with Sham. These results conclude that mitochondrial transplantation by vascular delivery or nebulization improves lung mechanics and decreases lung tissue injury.

Funder

NIH

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3