MicroRNA-221 is overexpressed in the equine asthmatic airway smooth muscle and modulates smooth muscle cell proliferation

Author:

Issouf Mohamed1,Vargas Amandine1,Boivin Roxane1,Lavoie Jean-Pierre1ORCID

Affiliation:

1. Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada

Abstract

Airway wall remodeling, including hyperplasia and hypertrophy of smooth muscle (ASM) cells leading to an increased smooth muscle mass, is considered central to asthma. However, molecular pathways responsible for ASM remodeling remain poorly understood. MicroRNAs (miRNAs) have emerged as key regulators of inflammatory and repair processes affecting the lungs and can downregulate protein expression by inhibiting target mRNA translation. We therefore hypothesized that miRNAs are involved in ASM remodeling in asthma by modulating ASM proliferation. We have analyzed the expression of miRNAs in bronchial smooth muscle from asthmatic horses during disease exacerbation and remission and from controls. Their involvement in ASM cell proliferation was then studied. Our results shown that miR-26a, miR-133, and miR-221 were upregulated in ASM from horses with asthma exacerbation compared with asthma remission and controls. MiR-221 induced cell hyperproliferation and reduced the expression of contractile gene markers in ASM cells. These changes were associated with the decreased mRNA expression of cell cycle regulatory genes ( p53, p21, and p27). In conclusion, we demonstrated for the first time an upregulation of miR-221 in asthmatic airway smooth muscle and confirm the involvement of miR-221 in ASM cell proliferation by regulation of the cell cycle arrest genes. Targeting miR-221 network genes may represent a novel approach for the treatment of ASM remodeling in asthma.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3