Sex-specific effects of sex steroids on alveolar epithelial Na+ transport

Author:

Haase Melanie1,Laube Mandy1,Thome Ulrich H.1

Affiliation:

1. Center for Pediatric Research Leipzig, Division of Neonatology, Hospital for Children & Adolescents, University of Leipzig, Leipzig, Germany

Abstract

Alveolar fluid clearance mediates perinatal lung transition to air breathing in newborn infants, which is accomplished by epithelial Na+ channels (ENaC) and Na-K-ATPase. Male sex represents a major risk factor for developing respiratory distress, especially in preterm infants. We previously showed that male sex is associated with reduced epithelial Na+ transport, possibly contributing to the sexual dimorphism in newborn respiratory distress. This study aimed to determine sex-specific effects of sex steroids on epithelial Na+ transport. The effects of testosterone, 5α-dihydrotestosterone (DHT), estradiol, and progesterone on Na+ transport and Na+ channel expression were determined in fetal distal lung epithelial (FDLE) cells of male and female rat fetuses by Ussing chamber and mRNA expression analyses. DHT showed a minor effect only in male FDLE cells by decreasing epithelial Na+ transport. However, flutamide, an androgen receptor antagonist, did not abolish the gender imbalance, and testosterone lacked any effect on Na+ transport in male and female FDLE cells. In contrast, estradiol and progesterone increased Na+ transport and Na+ channel expression especially in females, and prevented the inhibiting effect of DHT in males. Estrogen receptor inhibition decreased Na+ channel expression and eliminated the sex differences. In conclusion, female sex steroids stimulate Na+ transport especially in females and prevent the inhibitory effect of DHT in males. The ineffectiveness of testosterone suggests that Na+ transport is largely unaffected by androgens. Thus, the higher responsiveness of female cells to female sex steroids explains the higher Na+ transport activity, possibly leading to a functional advantage in females.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3