Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice

Author:

Ambalavanan Namasivayam123,Stanishevsky Andrei4,Bulger Arlene1,Halloran Brian1,Steele Chad5,Vohra Yogesh4,Matalon Sadis13678

Affiliation:

1. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama;

2. Department of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama;

3. Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama;

4. Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama;

5. Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;

6. Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama;

7. Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama; and

8. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Nanoparticles are used in an increasing number of biomedical, industrial, and food applications, but their safety profiles in developing organisms, including the human fetus and infant, have not been evaluated. Titanium oxide (TiO2) nanoparticles, which are commonly used in cosmetics, sunscreens, paints, and food, have been shown to induce emphysema and lung inflammation in adult mice. We hypothesized that exposure of newborn mice to TiO2 would induce lung inflammation and inhibit lung development. C57BL/6 mice were exposed to TiO2 (anatase; 8–10 nm) nanoparticles by intranasal instillation as a single dose on postnatal day 4 (P4) or as three doses on postnatal days 4, 7, and 10 (each dose = 1 μg/g body wt). Measurements of lung function (compliance and resistance), development (morphometry), inflammation (histology; multiplex analysis of bronchoalveolar lavage fluid for cytokines; PCR array and multiplex analysis of lung homogenates for cytokines) was performed on postnatal day 14. It was observed that a single dose of TiO2 nanoparticles led to inflammatory cell influx, and multiple doses led to increased inflammation and inhibition of lung development without significant effects on lung function. Macrophages were noted to take up the TiO2 nanoparticles, followed by polymorphonuclear infiltrate. Multiple cytokines and matrix metalloproteinase-9 were increased in lung homogenates, and VEGF was reduced. These results suggest that exposure of the developing lung to nanoparticles may lead to ineffective clearance by macrophages and persistent inflammation with resulting effects on lung development and may possibly impact the risk of respiratory disorders in later life.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3