Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells

Author:

Lin Mo-Jun,Yang Xiao-Ru,Cao Yuan-Ning,Sham James S. K.

Abstract

Reactive oxygen species (ROS) generated from NADPH oxidases and mitochondria have been implicated as key messengers for pulmonary vasoconstriction and vascular remodeling induced by agonists and hypoxia. Since Ca2+ mobilization is essential for vasoconstriction and cell proliferation, we sought to characterize the Ca2+ response and to delineate the Ca2+ pathways activated by hydrogen peroxide (H2O2) in rat intralobar pulmonary arterial smooth muscle cells (PASMCs). Exogenous application of 10 μM to 1 mM H2O2 elicited concentration-dependent increase in intracellular Ca2+ concentration in PASMCs, with an initial rise followed by a plateau or slow secondary increase. The initial phase was related to intracellular release. It was attenuated by the inositol trisphosphate (IP3) receptor antagonist 2-aminoethyl diphenylborate, ryanodine, or thapsigargin, but was unaffected by the removal of Ca2+ in external solution. The secondary phase was dependent on extracellular Ca2+ influx. It was unaffected by the voltage-gated Ca2+ channel blocker nifedipine or the nonselective cation channel blockers SKF-96365 and La3+, but inhibited concentration dependently by millimolar Ni2+, and potentiated by the Na+/Ca2+ exchange inhibitor KB-R 7943. H2O2 did not alter the rate of Mn2+ quenching of fura 2, suggesting store- and receptor-operated Ca2+ channels were not involved. By contrast, H2O2 elicited a sustained inward current carried by Na+ at −70 mV, and the current was inhibited by Ni2+. These results suggest that H2O2 mobilizes intracellular Ca2+ through multiple pathways, including the IP3- and ryanodine receptor-gated Ca2+ stores, and Ni2+-sensitive cation channels. Activation of these Ca2+ pathways may play important roles in ROS signaling in PASMCs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3