Growth and density-dependent regulation of NO synthase by the actin cytoskeleton in pulmonary artery endothelial cells

Author:

Kondrikov Dmitry,Han Hye-Rim,Block Edward R.,Su Yunchao

Abstract

We previously reported association of eNOS with actin increases eNOS activity. In the present study, regulation of activity of eNOS by actin cytoskeleton during endothelial growth was studied. We found eNOS activity in PAEC increased when cells grew from preconfluence to confluence. eNOS activity was much greater in PAEC in higher density than those in lower density, suggesting increase in eNOS activity during cell growth is caused by increase in cell density. Although eNOS protein contents were also increased when endothelial cells grew from preconfluence to confluence, magnitude of increase in eNOS activity was much higher than increase in eNOS protein content, suggesting posttranslational mechanisms played an important role in regulation of eNOS activity during endothelial growth. Confocal fluorescence microscopy revealed eNOS was colocalized with G-actin in preconfluent cells in perinuclear region, with both G-actin in perinuclear area and cortical F-actin in plasma membrane in confluent cells. There was more β-actin coimmunoprecipitated with eNOS in Triton X-100-soluble fraction in confluent cells in later growth phase and in high density. Decrease in eNOS association with β-actin by silencing β-actin expression using β-actin siRNA causes inhibition of eNOS activity, NO production, and endothelial monolayer wound repair in PAEC. Moreover, PAEC incubation with cytochalasin D and jasplakinolide resulted in increases in eNOS/actin association and in eNOS activity without changes in eNOS protein content. Yeast two-hybrid experiments suggested strong association between eNOS oxygenase domain and β-actin. These results indicate increase in eNOS association with actin is responsible for greater eNOS activity in confluent PAEC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3