Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma

Author:

Liu Tian1,Liu Yahui1,Miller Marina2,Cao Liuzhao1,Zhao Jiping1,Wu Jinxiang1,Wang Junfei13,Liu Lin1,Li Shuo1,Zou Minfang1,Xu Jiawei1,Broide David H.2,Dong Liang1

Affiliation:

1. Department of Pulmonary Medicine, Qilu Hospital of Shandong University, Jinan, China;

2. Department of Medicine, University of California, San Diego, La Jolla, California; and

3. Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia

Abstract

Asthma is a chronic disease related to airway hyperresponsiveness and airway remodeling. Airway remodeling is the important reason of refractory asthma and is associated with differentiation of airway epithelia into myofibroblasts via epithelial-mesenchymal transition (EMT) to increase the process of subepithelial fibrosis. There is growing evidence that autophagy modulates remodeling. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we hypothesized that Follistatin-like 1 (FSTL1) promotes EMT and airway remodeling by intensifying autophagy. With the use of transmission electron microscopy (TEM), double-membrane autophagosomes were detected in the airways of patients and mice. More autophagosomes were in patients with asthma and OVA-challenged mice compared with healthy controls. The expression of FSTL1 and beclin-1 was upregulated in the airways of patients with asthma and OVA-challenged mice, accompanied by airway EMT and remodeling. In OVA-challenged Fstl1+/− mice, the degree of airway remodeling and autophagy was decreased compared with control mice. The effects of FSTL1 on autophagy and EMT were also tested in 16HBE cells in vitro. Additionally, inhibition of autophagy by using LY-294002 and siRNA-ATG5 reduced the FSTL1-induced EMT in 16HBE cells, as measured by E-cadherin, N-cadherin, and vimentin expression. In line herewith, administration of LY-294002 reduced the expression of autophagy, EMT, and airway remodeling markers in FSTL1-challenged WT mice. Taken together, our study suggests that FSTL1 may induce EMT and airway remodeling by activating autophagy. These findings may provide novel avenues for therapeutic research targeting the autophagy and FSTL1 pathway, which may be beneficial to patients with refractory asthma.

Funder

National Natural Science Foundation of China (NSFC)

Key Research Project of Shandong Province, China

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3