Author:
Aschner Judy L.,Foster Susan L.,Kaplowitz Mark,Zhang Yongmei,Zeng Heng,Fike Candice D.
Abstract
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O2•−). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx−). The effects of GA and RA on ACh-stimulated O2•− generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx− accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O2•− generation.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献