Protective role of spleen-derived macrophages in lung inflammation, injury, and fibrosis induced by nitrogen mustard

Author:

Venosa Alessandro1ORCID,Malaviya Rama1,Gow Andrew J.1,Hall Leroy2,Laskin Jeffrey D.3,Laskin Debra L.1

Affiliation:

1. Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Piscataway, New Jersey;

2. Drug Safety Sciences, Johnson & Johnson, Raritan, New Jersey; and

3. Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, New Jersey

Abstract

Nitrogen mustard (NM) is a vesicant that causes lung injury and fibrosis, accompanied by a persistent macrophage inflammatory response. In these studies we analyzed the spleen as a source of these cells. Splenectomized (SPX) and sham control rats were treated intratracheally with NM (0.125 mg/kg) or PBS control. Macrophage responses were analyzed 1–7 days later. Splenectomy resulted in an increase in lung macrophages expressing CCR2, but a decrease in ATR-1α+ cells, receptors important in bone marrow and spleen monocyte trafficking, respectively. Splenectomy was also associated with an increase in proinflammatory M1 (iNOS+, CD11b+CD43+) macrophages in lungs of NM-treated rats, as well as greater upregulation of iNOS and COX-2 mRNA expression. Conversely, a decrease in CD11b+CD43 M2 macrophages was observed in SPX rats, with no changes in CD68+, CD163+, CD206+, or YM-1+ M2 macrophages, suggesting distinct origins of M2 subpopulations responding to NM. Macrophage expression of M2 genes including IL-10, ApoE, PTX-2, PTX-3, 5-HT2α, and 5-HT7 was also reduced in NM-treated SPX rats compared with shams, indicating impaired M2 activity. Changes in lung macrophages responding to NM as a consequence of splenectomy were correlated with exacerbated tissue injury and more rapid fibrogenesis. These data demonstrate that the spleen is a source of a subset of M2 macrophages with anti-inflammatory activity; moreover, in their absence, proinflammatory/cytotoxic M1 macrophages predominate in the lung, resulting in heightened pathology. Understanding the origin of macrophages and characterizing their phenotype after vesicant exposure may lead to more targeted therapeutics aimed at reducing toxicity and disease pathogenesis.

Funder

NIH

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3