The differential roles of the two NO-GC isoforms in adjusting airway reactivity

Author:

Verheyen Malte1,Puschkarow Michelle2,Gnipp Stefanie2,Koesling Doris1,Peters Marcus3,Mergia Evanthia1ORCID

Affiliation:

1. Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany

2. Department of Experimental Pneumology, Ruhr-University Bochum, Bochum, Germany

3. Department of Molecular Immunology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany

Abstract

The enzyme, nitric oxide-sensitive guanylyl cyclase (NO-GC), is activated by binding NO to its prosthetic heme group and catalyzes the formation of cGMP. The NO-GC is primarily known to mediate vascular smooth muscle relaxation in the lung, and inhaled NO has been successfully used as a selective pulmonary vasodilator. In comparison, NO-GC’s impact on the regulation of airway tone is less acknowledged and, most importantly, little is known about the issue that NO-GC signaling is accomplished by two isoforms: NO-GC1 and NO-GC2, implying the existence of distinct “cGMP pools.” Herein, we investigated the functional role of the NO-GC isoforms in respiration by measuring lung function parameters of isoform-specific knockout (KO) mice using noninvasive and invasive techniques. Our data revealed the participation and ongoing influence of NO-GC1-derived cGMP in the regulation of airway tone by showing that respiratory resistance was enhanced in NO-GC1-KOs and increased more pronouncedly after the challenge with the bronchoconstrictor methacholine. The tissue resistance and stiffness of NO-GC1-KOs were also higher because of narrowed airways that cause tissue distortion. Contrariwise, NO-GC2-KOs displayed reduced tissue elasticity, elastic recoil, and airway reactivity to methacholine, which did not even increase in an ovalbumin model of asthma that induced hyperresponsiveness in NO-GC1-KOs. In addition, conscious NO-GC2-KOs showed a higher breathing rate with a shorter duration of inspiration and expiration time, which remained faster even in the presence of bronchoconstrictors that slow down breathing. Thus, we provide evidence of two distinct NO/cGMP pathways in airways, accomplished by either NO-GC1 or NO-GC2, adjusting differentially the airway reactivity.

Funder

Dr. Georg E. and Marianne Kosing Foundation

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3