Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death

Author:

Xu Dong,Perez Ricardo E.,Ekekezie Ikechukwu I.,Navarro Angels,Truog William E.

Abstract

Hyperoxia is one of the major contributors to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants. Emerging evidence suggests that the arrested lung development of BPD is associated with pulmonary endothelial cell death and vascular dysfunction resulting from hyperoxia-induced lung injury. A better understanding of the mechanism of hyperoxia-induced endothelial cell death will provide critical information for the pathogenesis and therapeutic development of BPD. Epidermal growth factor-like domain 7 (EGFL7) is a protein secreted from endothelial cells. It plays an important role in vascular tubulogenesis. In the present study, we found that Egfl7 gene expression was significantly decreased in the neonatal rat lungs after hyperoxic exposure. The Egfl7 expression was returned to near normal level 2 wk after discounting oxygen exposure during recovery period. In cultured human endothelial cells, hyperoxia also significantly reduced Egfl7 expression. These observations suggest that diminished levels of Egfl7 expression might be associated with hyperoxia-induced endothelial cell death and lung injury. When we overexpressed human Egfl7 ( hEgfl7) in EA.hy926 human endothelial cell line, we found that hEgfl7 overexpression could partially block cytochrome c release from mitochondria and decrease caspase-3 activation. Further Western blotting analyses showed that hEgfl7 overexpression could reduce expression of a proapoptotic protein, Bax, and increase expression of an antiapoptotic protein, Bcl-xL. Theses findings indicate that hEGFL7 may protect endothelial cell from hyperoxia-induced apoptosis by inhibition of mitochondria-dependent apoptosis pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3