Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice

Author:

Okamoto Tatsuya,Gohil Kishorchandra,Finkelstein Erik I.,Bove Peter,Akaike Takaaki,van der Vliet Albert

Abstract

Acute lung inflammation and injury were induced by intranasal instillation of lipopolysaccharide (LPS) in normal and type 2 nitric oxide synthase (NOS2)-deficient (NOS2-/-) C57BL/6 mice. LPS-induced increases in extravasated airway neutrophils and in lung lavage fluid of TNF-α and macrophage inflammatory protein-2 were markedly lower in NOS2-/-than in wild-type mice, indicating that NOS2-derived nitric oxide (NO·) participates in inflammatory cytokine production and neutrophil recruitment. Instillation of LPS also increased total lung lavage protein and induced matrix metalloproteinase-9 and mucin 5AC, as indexes of lung epithelial injury and/or mucus hyperplasia, and increased tyrosine nitration of lung lavage proteins, a marker of oxidative injury. All these responses were less pronounced in NOS2-/-than in wild-type mice. Inhibition of NOS activity also suppressed production of TNF-α and macrophage inflammatory protein-2 by LPS-stimulated mouse alveolar MH-S macrophages, and this was restored by NO· donors, illustrating involvement of NO· in macrophage cytokine signaling. Oligonucleotide microarray (GeneChip) analysis of global lung gene expression revealed that LPS inhalation induced a range of transcripts encoding proinflammatory cytokines and chemokines, stress-inducible factors, and other extracellular factors and suppressed mRNAs encoding certain cytoskeletal proteins and signaling proteins, responses that were generally attenuated in NOS2-/-mice. Comparison of both mouse strains revealed altered expression of several cytoskeletal proteins, cell surface proteins, and signaling proteins in NOS2-/-mice, changes that may partly explain the reduced responsiveness to LPS. Collectively, our results suggest that NOS2 participates in the acute inflammatory response to LPS by multiple mechanisms: involvement in proinflammatory cytokine signaling and alteration of the expression of various genes that affect inflammatory-immune responses to LPS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3