Affiliation:
1. Faculté de Médecine, Faculté des Sciences Université Paris XII, Institut National de la Santé et de la Recherche Médicale, Unité 492 de Physiopathologie et Thérapeutique Respiratoire, 94010 Créteil; Facultéde Médecine, Laboratoire d'Enzymologie et de Chimie des Protéines, 37032 Tours Cedex; and Département des Sciences du Vivant, Service de Neurovirologie, Commissariat àl'Énergie Atomique, 92265 Fontenay aux Roses, France
Abstract
Epidemiological and experimental studies suggest that diesel exhaust particles (DEPs) may be associated with increased respiratory mortality and morbidity. Several recent studies have also shown that DEPs increase the production of inflammatory cytokines by human bronchial epithelium (HBE) cells in vitro. The present study investigates the effects of DEPs on the interaction of l-HBE cells (16HBE14o-) with the cell and matrix microenvironment based on evaluation of integrin-type cell/matrix ligand expression, cytoskeleton (CSK) stiffness, and matrix remodeling via matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 expression. The results showed that DEP exposure induced: 1) a net dose-dependent decrease in CSK stiffness through actin fibers, 2) a concomitant specific reduction of both α3- and β1-integrin subunits extensively expressed on the HBE cell surface, 3) a decrease in the level of CD44, which is a major HBE cell-cell and HBE cell-matrix adhesion molecule; and 4) an isolated decrease in MMP-1 expression without any change in tissue inhibitor of matrix metalloproteinase (TIMP)-1 or TIMP-2 tissue inhibitors. Restrictive modulation of cell-matrix interaction, cell-cell connection, CSK stiffness, and fibrillary collagen remodeling results in a decreased wound closure capacity and an increased deadhesion capacity. In conclusion, on the basis of these results, we can propose that, in addition to their ability to increase the production of inflammatory cytokines, DEPs could also alter the links between actin CSK and the extracellular matrix, suggesting that they might facilitate HBE cell detachment in vivo.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献