Affiliation:
1. Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
Abstract
Apoptotic cell death is essential for mammalian development and tissue homeostasis. Dysregulation of apoptosis has been identified in pathologies including in pulmonary fibrotic remodeling. We previously reported that a key proapoptotic factor in fibrosis, angiotensin II (Ang II), mediates apoptosis in primary pulmonary artery endothelial cells (PAEC) via the AT2 receptor and requires activation of AMP-regulated protein kinase (AMPK). We now demonstrate that Ang II induces E2F1 transcription factor binding to and activation of the promoter for the Bcl-2 homology 3 (BH3)-only protein Bim. In PAEC, Ang II treatment induced cyclin-dependent kinase 4 (Cdk4)-mediated hyperphosphorylation of retinoblastoma protein (Rb) and its disassociation from E2F1, a key step in facilitating E2F1-directed transcriptional activity. Indeed, ectopic expression of a dominant negative Cdk4 mutant inhibited Ang II-mediated hyperphosphorylation of Rb and Bim promoter activation. Our data also show that the β-subunit of AMPK was constitutively associated with Cdk4 in PAEC and that Ang II treatment induced AMPKβ phosphorylation and subsequent disassociation of this complex. Both Ang II-induced Rb hyperphosphorylation and Cdk4-AMPK disassociation were blocked by the AMPK inhibitor compound C. Together these findings illuminate a novel proapoptotic signaling pathway in endothelial cells, whereby Ang II triggers E2F1-mediated transcriptional upregulation of Bim via activation of AMPKβ1/2 and Cdk4.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献