Affiliation:
1. Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands;
2. Ottawa Hospital Research Institute, Ottawa, Canada; and
3. Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
Abstract
Loss of diaphragm muscle strength in inflammatory lung disease contributes to mortality and is associated with diaphragm fiber atrophy. Ubiquitin (Ub) 26S-proteasome system (UPS)-dependent protein breakdown, which mediates muscle atrophy in a number of physiological and pathological conditions, is elevated in diaphragm muscle of patients with chronic obstructive pulmonary disease. Nuclear factor kappa B (NF-κB), an essential regulator of many inflammatory processes, has been implicated in the regulation of poly-Ub conjugation of muscle proteins targeted for proteolysis by the UPS. Here, we test if NF-κB activation in diaphragm muscle and subsequent protein degradation by the UPS are required for pulmonary inflammation-induced diaphragm atrophy. Acute pulmonary inflammation was induced in mice by intratracheal lipopolysaccharide instillation. Fiber cross-sectional area, ex vivo tyrosine release, protein poly-Ub conjugation, and inflammatory signaling were determined in diaphragm muscle. The contribution of NF-κB or the UPS to diaphragm atrophy was assessed in mice with intact or genetically repressed NF-κB signaling or attenuated poly-Ub conjugation, respectively. Acute pulmonary inflammation resulted in diaphragm atrophy measured by reduced muscle fiber cross-sectional area. This was accompanied by diaphragm NF-κB activation, and proteolysis, measured by tyrosine release from the diaphragm. Poly-Ub conjugation was increased in diaphragm, as was the expression of muscle-specific E3 Ub ligases. Genetic suppression of poly-Ub conjugation prevented inflammation-induced diaphragm muscle atrophy, as did muscle-specific inhibition of NF-κB signaling. In conclusion, the present study is the first to demonstrate that diaphragm muscle atrophy, resulting from acute pulmonary inflammation, requires NF-κB activation and UPS-mediated protein degradation.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献