Chronic lung injury and impaired pulmonary function in a mouse model of acid ceramidase deficiency

Author:

Yu Fabian P. S.1,Islam Diana1,Sikora Jakub23,Dworski Shaalee1,Gurka Jiří4,López-Vásquez Lucía1,Liu Mingyao156,Kuebler Wolfgang M.157,Levade Thierry8,Zhang Haibo1579,Medin Jeffrey A.1610

Affiliation:

1. Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada

2. Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, Charles University, First Faculty of Medicine, Prague, Czech Republic

3. Institute of Pathology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic

4. Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic

5. Department of Physiology, University of Toronto, Toronto Ontario, Canada

6. University Health Network, Toronto, Ontario, Canada

7. Keenan Research Centre for Biomedical Science, Saint Michael's Hospital, Toronto, Ontario, Canada

8. Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, and INSERM UMR1037 CRCT, Université de Toulouse, Toulouse, France

9. Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada

10. Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin

Abstract

Farber disease (FD) is a debilitating lysosomal storage disorder (LSD) caused by a deficiency of acid ceramidase (ACDase) activity due to mutations in the gene ASAH1. Patients with ACDase deficiency may develop a spectrum of clinical phenotypes. Severe cases of FD are frequently associated with neurological involvement, failure to thrive, and respiratory complications. Mice homozygous ( Asah1P361R/P361R) for an orthologous patient mutation in Asah1 recapitulate human FD. In this study, we show significant impairment in lung function, including low compliance and increased airway resistance in a mouse model of ACDase deficiency. Impaired lung mechanics in Farber mice resulted in decreased blood oxygenation and increased red blood cell production. Inflammatory cells were recruited to both perivascular and peribronchial areas of the lung. We observed large vacuolated foamy histiocytes that were full of storage material. An increase in vascular permeability led to protein leakage, edema, and impacted surfactant homeostasis in the lungs of Asah1P361R/P361R mice. Bronchial alveolar lavage fluid (BALF) extraction and analysis revealed accumulation of a highly turbid lipoprotein-like substance that was composed in part of surfactants, phospholipids, and ceramides. The phospholipid composition of BALF from Asah1P361R/P361R mice was severely altered, with an increase in both phosphatidylethanolamine (PE) and sphingomyelin (SM). Ceramides were also found at significantly higher levels in both BALF and lung tissue from Asah1P361R/P361R mice when compared with levels from wild-type animals. We demonstrate that a deficiency in ACDase leads to sphingolipid and phospholipid imbalance, chronic lung injury caused by significant inflammation, and increased vascular permeability, leading to impaired lung function.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

MACC Fund Professorship

OPPK

Charles University Institutional R&D Fund

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3