Serotonin 2A receptor inhibition protects against the development of pulmonary hypertension and pulmonary vascular remodeling in neonatal mice

Author:

Delaney Cassidy1,Sherlock Laurie1,Fisher Susan1,Maltzahn Joanne2,Wright Clyde1,Nozik-Grayck Eva2

Affiliation:

1. Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado

2. Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado

Abstract

Pulmonary hypertension (PH) complicating bronchopulmonary dysplasia (BPD) worsens clinical outcomes in former preterm infants. Increased serotonin (5-hydroxytryptamine, 5-HT) signaling plays a prominent role in PH pathogenesis and progression in adults. We hypothesized that increased 5-HT signaling contributes to the pathogenesis of neonatal PH, complicating BPD and neonatal lung injury. Thus, we investigated 5-HT signaling in neonatal mice exposed to bleomycin, previously demonstrated to induce PH and alveolar simplification. Newborn wild-type mice received intraperitoneal PBS, ketanserin (1 mg/kg), bleomycin (3 U/kg) or bleomycin (3 U/kg) plus ketanserin (1 mg/kg) three times weekly for 3 wk. Following treatment with bleomycin, pulmonary expression of the rate-limiting enzyme of 5-HT synthesis, tryptophan hydroxylase-1 (Tph1), was significantly increased. Bleomycin did not affect pulmonary 5-HT 2A receptor (R) expression, but did increase pulmonary gene expression of the 5-HT 2BR and serotonin transporter. Treatment with ketanserin attenuated bleomycin-induced PH (increased RVSP and RVH) and pulmonary vascular remodeling (decreased vessel density and increased muscularization of small vessels). In addition, we found that treatment with ketanserin activated pulmonary MAPK and Akt signaling in mice exposed to bleomycin. We conclude that 5-HT signaling is increased in a murine model of neonatal PH and pharmacological inhibition of the 5-HT 2AR protects against the development of PH in neonatal lung injury. We speculate this occurs through restoration of MAPK signaling and increased Akt signaling.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3