Affiliation:
1. Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado
2. Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado
Abstract
Pulmonary hypertension (PH) complicating bronchopulmonary dysplasia (BPD) worsens clinical outcomes in former preterm infants. Increased serotonin (5-hydroxytryptamine, 5-HT) signaling plays a prominent role in PH pathogenesis and progression in adults. We hypothesized that increased 5-HT signaling contributes to the pathogenesis of neonatal PH, complicating BPD and neonatal lung injury. Thus, we investigated 5-HT signaling in neonatal mice exposed to bleomycin, previously demonstrated to induce PH and alveolar simplification. Newborn wild-type mice received intraperitoneal PBS, ketanserin (1 mg/kg), bleomycin (3 U/kg) or bleomycin (3 U/kg) plus ketanserin (1 mg/kg) three times weekly for 3 wk. Following treatment with bleomycin, pulmonary expression of the rate-limiting enzyme of 5-HT synthesis, tryptophan hydroxylase-1 (Tph1), was significantly increased. Bleomycin did not affect pulmonary 5-HT 2A receptor (R) expression, but did increase pulmonary gene expression of the 5-HT 2BR and serotonin transporter. Treatment with ketanserin attenuated bleomycin-induced PH (increased RVSP and RVH) and pulmonary vascular remodeling (decreased vessel density and increased muscularization of small vessels). In addition, we found that treatment with ketanserin activated pulmonary MAPK and Akt signaling in mice exposed to bleomycin. We conclude that 5-HT signaling is increased in a murine model of neonatal PH and pharmacological inhibition of the 5-HT 2AR protects against the development of PH in neonatal lung injury. We speculate this occurs through restoration of MAPK signaling and increased Akt signaling.
Funder
HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献