Virulence factors ofStaphylococcus aureusinduce Erk-MAP kinase activation and c-Fos expression in S9 and 16HBE14o- human airway epithelial cells

Author:

Below Sabine,Konkel Anne,Zeeck Cathrin,Müller Christian,Kohler Christian,Engelmann Susanne,Hildebrandt Jan-Peter

Abstract

Part of the innate defense of bronchial epithelia against bacterial colonization is regulated secretion of salt, water, and mucus as well as defensins and cytokines involving MAP kinase activation and alterations in early gene expression. We tested two different types of immortalized human airway epithelial cells (S9, 16HBE14o-) for activation of Erk-type MAP kinases and for expression of c-Fos on treatment with Staphylococcus aureus culture supernatants from the stationary growth phase [optical density (OD)540nm= 10] or with recombinant S. aureus hemolysins A and B (Hla, Hlb). OD10 supernatants activated Erk-type MAP kinases and c-Fos expression in a concentration-dependent manner. Hla induced Erk-type kinase phosphorylation in S9 but not in 16HBE14o- cells. Hlb induced Erk activation in either cell type. Basal and stimulated levels of Erk-type MAP kinase phosphorylation were sensitive to the Mek1 inhibitor PD-98059, indicating that the bacterial products activated the entire signaling cascade that coregulates IL-8 induction and secretion. While c-Fos expression was enhanced by OD10 supernatants, Hla, and Hlb in S9 cells, 16HBE14o- cells responded to OD10 supernatant and Hlb but not to Hla. In S9 cells, PD-98059 suppressed c-Fos upregulation by OD10 supernatant, Hla, or Hlb, indicating that c-Fos expression requires activation of Erk-type MAP kinases. In 16HBE14o- cells, however, c-Fos expression by OD10 supernatant was sensitive to PD-98059, while that induced by Hlb was not. This indicates that ingredients of OD10 supernatants other than Hla or Hlb are activating Erk-type MAP kinases in 16HBE14o- cells and that other intracellular signaling systems apart from Erk-type MAP kinases contribute to Hlb-mediated regulation of c-Fos. Thus interaction of bacterial factors with airway epithelial cells may be highly cell type specific.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3