Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-α during pulmonary ischemia-reperfusion injury

Author:

Sharma Ashish K.,Fernandez Lucas G.,Awad Alaa S.,Kron Irving L.,Laubach Victor E.

Abstract

Pulmonary ischemia-reperfusion (IR) injury entails acute activation of alveolar macrophages followed by neutrophil sequestration. Although proinflammatory cytokines and chemokines such as TNF-α and monocyte chemoattractant protein-1 (MCP-1) from macrophages are known to modulate acute IR injury, the contribution of alveolar epithelial cells to IR injury and their intercellular interactions with other cell types such as alveolar macrophages and neutrophils remain unclear. In this study, we tested the hypothesis that following IR, alveolar macrophage-produced TNF-α further induces alveolar epithelial cells to produce key chemokines that could then contribute to subsequent lung injury through the recruitment of neutrophils. Cultured RAW264.7 macrophages and MLE-12 alveolar epithelial cells were subjected to acute hypoxia-reoxygenation (H/R) as an in vitro model of pulmonary IR. H/R (3 h/1 h) significantly induced KC, MCP-1, macrophage inflammatory protein-2 (MIP-2), RANTES, and IL-6 (but not TNF-α) by MLE-12 cells, whereas H/R induced TNF-α, MCP-1, RANTES, MIP-1α, and MIP-2 (but not KC) by RAW264.7 cells. These results were confirmed using primary murine alveolar macrophages and primary alveolar type II cells. Importantly, using macrophage and epithelial coculture methods, the specific production of TNF-α by H/R-exposed RAW264.7 cells significantly induced proinflammatory cytokine/chemokine expression (KC, MCP-1, MIP-2, RANTES, and IL-6) by MLE-12 cells. Collectively, these results demonstrate that alveolar type II cells, in conjunction with alveolar macrophage-produced TNF-α, contribute to the initiation of acute pulmonary IR injury via a proinflammatory cascade. The release of key chemokines, such as KC and MIP-2, by activated type II cells may thus significantly contribute to neutrophil sequestration during IR injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference22 articles.

1. Normoxic Lung Ischemia/Reperfusion Accelerates Shedding of Angiotensin Converting Enzyme from the Pulmonary Endothelium

2. Crestani B, Aubier M. Inflammatory role of alveolar epithelial cells. Kidney Int Suppl 65: S88–S93, 1998.

3. Eppinger MJ, Deeb GM, Bolling SF, Ward PA. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol 150: 1773–1784, 1997.

4. Pattern of Injury and the Role of Neutrophils in Reperfusion Injury of Rat Lung

5. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3