CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling

Author:

Anderson Justin D.12ORCID,Liu Zhongyu12,Odom L. Victoria2,Kersh Latona1,Guimbellot Jennifer S.12

Affiliation:

1. Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama

2. Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients’ cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.

Funder

Cystic Fibrosis Foundation

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

HHS | NIH | National Center for Advancing Translational Sciences

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3