Affiliation:
1. Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
2. Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients’ cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Funder
Cystic Fibrosis Foundation
HHS | NIH | National Heart, Lung, and Blood Institute
HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases
HHS | NIH | National Center for Advancing Translational Sciences
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献