Cytoprotective effects of albumin, nitrosated or reduced, in cultured rat pulmonary vascular cells

Author:

Li Hui-Hua12,Xu Jing1,Wasserloos Karla J.3,Li Jin3,Tyurina Yulia Y.3,Kagan Valerian E.3,Wang Xiaorong4,Chen Alex F.4,Liu Zhao-Qian2,Stoyanovsky Detcho3,Pitt Bruce R.3,Zhang Li-Ming1

Affiliation:

1. Department of Anesthesiology, University of Pittsburgh School of Medicine,

2. Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China

3. Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh,

4. Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and

Abstract

S-nitrosoalbumin (SNO-Alb) has been shown to be an efficacious cytoprotective molecule in acute lung injury, as well as ischemia-reperfusion injury in heart and skeletal muscle. Nonetheless, limited information is available on the cellular mechanism of such protection. Accordingly, we investigated the protective effects of SNO-Alb [ and its denitrosated congener, reduced albumin (SH-Alb) ] on tert-butyl hydroperoxide (tBH)-mediated cytotoxicity in cultured rat pulmonary microvascular endothelial cells (RPMEC), as well as hydrogen sulfide (H2S)-mediated cytotoxicity in rat pulmonary artery smooth muscle cells (RPASMC). We noted that tBH caused a concentration-dependent necrosis in RPMEC, and pretreatment of RPMEC with SNO-Alb dose-dependently decreased the sensitivity of these cells to tBH. A component of SNO-Alb cytoprotection was sensitive to NG-nitro-l-arginine methyl ester and was associated with activation of endothelial nitric oxide synthase (eNOS), phenomena that could be reproduced with pretreatment with SH-Alb. Exogenous H2S caused concentration-dependent apoptosis in RPASMC due to activation of ERK1/2 and p38, as well as downregulation of Bcl-2. Pretreatment with SNO-Alb reduced H2S-mediated apoptosis in a concentration-dependent manner that was associated with SNO-Alb-mediated inhibition of activation of ERK1/2 and p38. Pretreatment with SNO-Alb reduced toxicity of 1 mM sodium hydrosulfide in an NG-nitro-l-arginine methyl ester-sensitive fashion in RPASMC that expressed gp60 and neuronal NOS and was capable of transporting fluorescently labeled SH-Alb. Therefore, SNO-Alb is cytoprotective against models of oxidant-induced necrosis (tBH) and inhibitors of cellular respiration and apoptosis (H2S) in both pulmonary endothelium and smooth muscle, respectively, and a component of such protection can be attributed to a SH-Alb-mediated activation of constitutive NOS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3