Impaired VEGF and nitric oxide signaling after nitrofen exposure in rat fetal lung explants

Author:

Muehlethaler Vincent,Kunig Anette M.,Seedorf Gregory,Balasubramaniam Vivek,Abman Steven H.

Abstract

We hypothesized that abnormal fetal lung growth in experimental congenital diaphragmatic hernia after maternal nitrofen exposure alters lung structure due to impaired VEGF signaling, which can be reversed with VEGF or nitric oxide (NO) treatment. Timed-pregnant Sprague-Dawley rats were treated with nitrofen on embryonic day 9 (E9), and fetal lungs were harvested for explant culture on E15. Explants were maintained in 3% O2for 3 days and were treated with NO gas or recombinant human VEGF protein for 3 days. To determine the effects of VEGF inhibition on lung structure, normal fetal lung explants were treated with SU-5416, a VEGF receptor inhibitor, with or without exogenous NO or VEGF. We found that nitrofen treatment impaired lung structure, as evidenced by decreased branching at day 0, but lung structure was not different from controls after 3 days in culture. Nitrofen reduced lung VEGF but not endothelial NO synthase protein level. Treatment with NO enhanced lung growth in control and nitrofen-exposed lungs; however, the response to NO in the nitrofen-treated lungs was reduced when compared with controls. VEGF treatment did not cause a further increase in lung complexity after nitrofen exposure. SU-5416 treatment altered lung structure, which improved with NO but not VEGF treatment. Both nitrofen and SU-5416 treatment increased apoptosis in the mesenchyme of fetal lung explants. We conclude that nitrofen exposure increased apoptosis, decreased lung growth and reduced VEGF expression, and that exogenous NO but not VEGF treatment enhances lung growth. Disruption of lung architecture after VEGF receptor blockade was similar to nitrofen-induced changes but was more responsive to NO.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3