Caveolin-1 in cytokine-induced enhancement of intracellular Ca2+ in human airway smooth muscle

Author:

Sathish Venkatachalem1,Abcejo Amard J.1,VanOosten Sarah Kay1,Thompson Michael A.1,Prakash Y. S.12,Pabelick Christina M.12

Affiliation:

1. Departments of 1Anesthesiology and

2. Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota

Abstract

Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca2+ ([Ca2+]i) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca2+]i signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca2+]i regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca2+]i in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca2+]i in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca2+]i responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca2+]i responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR1 receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca2+]i.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3