Author:
Lakshminrusimha Satyan,Russell James A.,Gugino Sylvia F.,Ryan Rita M.,Mathew Bobby,Nielsen Lori C.,Morin Frederick C.
Abstract
Bronchus-derived relaxing factor (BrDRF) decreases contractility of newborn rat pulmonary arteries (PA) and is dependent on nitric oxide (NO) synthesis. In vivo, this factor appears to gain access via the adventitial side of the PA. However, the adventitia has been reported to be a barrier to NO. We studied the effect of an adjacent bronchus on PA contractility to norepinephrine in nine juvenile lambs in the presence and absence of inhibitors of the NO pathway (LNA, ODQ, and Rp-8-Br-PET-cGMPS), cytochrome P-450 inhibitor (17-ODYA), perivascular nerve activity blocker (TTX), and superoxide scavenger (tiron), and following disruption of bronchial epithelium. We also evaluated whether BrDRF was effective on both the endothelial and/or adventitial side of PA. Fifth-generation PA rings with and without an attached bronchus were contracted in standard baths with norepinephrine. PA were dissected, cut open, and placed in a sided chamber in which adventitial and endothelial sides of the PA were exposed to unattached bronchus separately. Norepinephrine (10−8 to 10−5 M) contractions were expressed as a fraction of maximal KCl (118 mM) contractions. Norepinephrine contractions were significantly reduced by the presence of an attached bronchus, an effect reversed by pretreatment with LNA, ODQ, and Rp-8-Br-PET-cGMPS, and removal of bronchial epithelium. Unattached bronchus in the bath perfusing the adventitial side was effective in inhibiting the contractile response in PA. NO gas relaxed PA when administered on the endothelial side only. We speculate that BrDRF is a diffusible factor that crosses the adventitia and stimulates production of NO within the PA.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献