Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries

Author:

Liu J. Q.1,Sham J. S. K.1,Shimoda L. A.1,Kuppusamy P.1,Sylvester J. T.1

Affiliation:

1. Divisions of Pulmonary and Critical Care Medicine and Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224

Abstract

To determine whether reactive oxygen species (ROS) play an essential role in hypoxic pulmonary vasoconstriction (HPV) and the cellular locus of ROS production and action during HPV, we measured internal diameter (ID) at constant transmural pressure, lucigenin-derived chemiluminescence (LDCL), and electron paramagnetic resonance (EPR) spin adduct spectra in small distal porcine pulmonary arteries, and dichlorofluorescein (DCF) fluorescence in myocytes isolated from these arteries. Hypoxia (4% O2) decreased ID, increased DCF fluorescence, tended to increase LDCL, and in some preparations produced EPR spectra consistent with hydroxyl and alkyl radicals. Superoxide dismutase (SOD, 150 U/ml) or SOD + catalase (CAT, 200 U/ml) did not alter ID during normoxia but reduced or abolished the constriction induced by hypoxia. SOD also blocked HPV in endotheliumdenuded arteries after restoration of the response by exposure to 10-10 M endothelin-1. Confocal fluorescence microscopy demonstrated that labeled SOD and CAT entered pulmonary arterial myocytes. SOD, SOD + CAT, and CAT blocked the increase in DCF fluorescence induced by hypoxia, but SOD + CAT and CAT also caused a stable increase in fluorescence during normoxia, suggesting that CAT diminished efflux of DCF from cells or oxidized the dye directly. We conclude that HPV required increased concentrations of ROS produced by and acting on pulmonary arterial smooth muscle rather than endothelium.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3