Hypothermia attenuates iNOS, CAT-1, CAT-2, and nitric oxide expression in lungs of endotoxemic rats

Author:

Scumpia Philip O.1,Sarcia Paul J.1,DeMarco Vincent G.123,Stevens Bruce R.4,Skimming Jeffrey W.123

Affiliation:

1. Departments of Pediatrics and

2. Child Health and

3. Physiology, University of Missouri, Columbia, Missouri 65211

4. Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610; and Departments of

Abstract

Endotoxemia stimulates endogenous nitric oxide formation, induces transcription of arginine transporters, and causes lung injury. Hypothermia inhibits nitric oxide formation and is used as a means of organ preservation. We hypothesized that hypothermia inhibits endotoxin-induced intrapulmonary nitric oxide formation and that this inhibition is associated with attenuated transcription of enzymes that regulate nitric oxide formation, such as inducible nitric oxide synthase (iNOS) and the cationic amino acid transporters 1 (CAT-1) and 2 (CAT-2). Rats were anesthetized and randomized to treatment with hypothermia (18–24°C) or normothermia (36–38°C). Endotoxin was administered intravascularly. Concentrations of iNOS, CAT-1, CAT-2 mRNA, iNOS protein, and nitrosylated proteins were measured in lung tissue homogenates. We found that hypothermia abrogated the endotoxin-induced increase in exhaled nitric oxide and lung tissue nitrotyrosine concentrations. Western blot analyses revealed that hypothermia inhibited iNOS, but not endothelial nitric oxide synthase, protein expression in lung tissues. CAT-1, CAT-2, and iNOS mRNA concentrations were lower in the lungs of hypothermic animals. These findings suggest that hypothermia protects against intrapulmonary nitric oxide overproduction and nitric oxide-mediated lung injury by inhibiting transcription of iNOS, CAT-1, and CAT-2.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3