Affiliation:
1. Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
Abstract
We have demonstrated previously that intracellular transport is impaired in cystic fibrosis (CF) epithelial cells. This impairment is related to both growth and inflammatory regulation in CF cell and animal models. Understanding how transport in CF cells is regulated and identifying means to manipulate that regulation are key to identifying new therapies that can address key CF phenotypes. It was hypothesized that resveratrol could replicate these benefits since it interfaces with multiple pathways identified to affect microtubule regulation in CF. It was found that resveratrol treatment significantly restored intracellular transport as determined by monitoring both cholesterol distribution and the distribution of rab7-positive organelles in CF cells. This restoration of intracellular transport is due to correction of both microtubule formation rates and microtubule acetylation in cultured CF cell models and primary nasal epithelial cells. Mechanistically, the effect of resveratrol on microtubule regulation and intracellular transport was dependent on peroxisome proliferator-activated receptor-γ signaling and its ability to act as a pan-histone deacetylase (HDAC) inhibitor. Resveratrol represents a candidate compound with known anti-inflammatory properties that can restore both microtubule formation and acetylation in CF epithelial cells.
Funder
Cystic Fibrosis Foundation
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献