3-Nitrotyrosine attenuates respiratory syncytial virus infection in human bronchial epithelial cell line

Author:

Huang Yuh-Chin T.,Li Zhuowei,Brighton Luisa E.,Carson Johnny L.,Becker Susanne,Soukup Joleen M.

Abstract

3-Nitrotyrosine (NO2Tyr), an l-tyrosine derivative during nitrative stress, can substitute the COOH-terminal tyrosine of α-tubulin, posttranslationally altering microtubular functions. Because infection of the cells by respiratory syncytial virus (RSV) may require intact microtubules, we tested the hypothesis that NO2Tyr would inhibit RSV infection and intracellular signaling via nitrotyrosination of α-tubulin. A human bronchial epithelial cell line (BEAS-2B) was incubated with RSV with or without NO2Tyr. The release of chemokines and viral particles and activation of interferon regulatory factor-3 (IRF-3) were measured. Incubation with NO2Tyr increased nitrotyrosinated α-tubulin, and NO2Tyr colocalized with microtubules. RSV-infected cells released viral particles, RANTES, and IL-8 in a time- and dose-dependent manner, and intracellular RSV proteins coprecipitated with α-tubulin. NO2Tyr attenuated the RSV-induced release of RANTES, IL-8, and viral particles by 50–90% and decreased α-tubulin-associated RSV proteins. 3-Chlorotyrosine, another l-tyrosine derivative, had no effects. NO2Tyr also inhibited the RSV-induced shift of the unphosphorylated form I of IRF-3 to the phosphorylated form II. Pre-exposure of the cells to NO2(0.15 ppm, 4 h), which produced diffuse protein tyrosine nitration, did not affect RSV-induced release of RANTES, IL-8, or viral particles. NO2Tyr did not affect the potential of viral spreading to the neighboring cells since the RSV titers were not decreased when the uninfected cells were cocultured with the preinfected cells in NO2Tyr-containing medium. These results indicate that NO2Tyr, by replacing the COOH-terminal tyrosine of α-tubulin, attenuated RSV infection, and the inhibition appeared to occur at the early stages of RSV infection.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Reference55 articles.

1. Replication of respiratory syncytial virus is inhibited in target cells generating nitric oxide in situ

2. Arnold R, Konig B, Galatti H, Werchau H, and Konig W.Cytokine (IL-8, IL-6, TNF-alpha) and soluble TNF receptor-I release from human peripheral blood mononuclear cells after respiratory syncytial virus infection.Immunology85: 364–372, 1995.

3. RSV infection of human airway epithelial cells causes production of the beta-chemokine RANTES

4. Cruising along Microtubule Highways: How Membranes Move through the Secretory Pathway

5. Role of Cellular Actin in the Gene Expression and Morphogenesis of Human Respiratory Syncytial Virus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3