Author:
da Silva Mauricio C. A.,Zahm Jean-Marie,Gras Delphine,Bajolet Odile,Abely Michel,Hinnrasky Jocelyne,Milliot Magali,de Assis Maria Cristina,Hologne Coralie,Bonnet Noël,Merten Marc,Plotkowski Maria Cristina,Puchelle Edith
Abstract
Staphylococcus aureus is a major cause of pulmonary infection, particularly in cystic fibrosis (CF) patients. However, few aspects of the interplay between S. aureus and host airway epithelial cells have been investigated thus far. We investigated by videomicroscopy the time- and bacterial concentration-dependent (104, 106, and 108CFU/ml) effect of S. aureus on adherence, internalization, and the associated damage of the airway epithelial cells. The balance between the secretion by S. aureus of the α-toxin virulence factor and by the airway cells of the antibacterial secretory leukoproteinase inhibitor (SLPI) was also analyzed. After 1 h of interaction, whatever the initial bacterial concentration, a low percentage of S. aureus (<8%) adhered to airway cells, and no airway epithelial cell damage was observed. In contrast, after 24 h of incubation, more bacteria adhered to airway epithelial cells, internalized bacteria were observed, and a bacterial concentration-dependent effect on airway cell damage was observed. At 24 h, most airway cells incubated with bacteria at 108CFU/ml exhibited a necrotic phenotype. The necrosis was preceded by a transient apoptotic process. In parallel, we observed a time- and bacterial concentration-dependent decrease in SLPI and increase in α-toxin expression. These results suggest that airway cells can defend against S. aureus in the early stages of infection. However, in later phases, there is a marked imbalance between the bactericidal capacity of host cells and bacterial virulence. These findings reinforce the potential importance of S. aureus in the pathogenicity of airway infections, including those observed early in CF patients.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献