Dopamine D2 receptor modulation of carotid body type 1 cell intracellular calcium in developing rats

Author:

Carroll J. L.,Boyle K. M.,Wasicko M. J.,Sterni L. M.

Abstract

Carotid chemoreceptor type 1 cells release dopamine, which inhibits carotid chemoreceptor activity via dopamine D2 autoreceptors on type 1 cells. Postnatal changes in dopaminergic modulation may be involved in postnatal chemoreceptor development. The present study explores dopaminergic modulation of the intracellular calcium ([Ca2+]i) response to hypoxia in type 1 cells from 1, 3, and 11- to 16-day-old rats. Using fura-2, we studied the effects of quinpirole, a D2 receptor agonist, on type 1 cell [Ca2+]iresponse to 90-s hypoxia challenges (Po2∼1–2 mmHg). Cells were sequentially exposed to the following challenges: 1) hypoxia control, 2) hypoxia plus quinpirole, and 3) hypoxia plus quinpirole plus sulpiride (D2 receptor antagonist). In the 11- to 16-day-old group, type 1 cell [Ca2+]iincreased ∼3 to 4-fold over resting [Ca2+]iin response to hypoxia. Quinpirole (10 μM) significantly blunted the peak [Ca2+]iresponse to hypoxia. Repeat challenge with hypoxia plus 10 μM quinpirole in the presence of 10 μM sulpiride partially restored the hypoxia [Ca2+]iresponse. In sharp contrast to the older aged group, 10 μM quinpirole had minimal effect on hypoxia response of type 1 cells from 1-day-olds and a small but significant effect at 3 days of age. We conclude that stimulation of dopamine D2 receptors inhibits type 1 cell [Ca2+]iresponse to hypoxia, consistent with an inhibitory autoreceptor role. These findings suggest dopamine-mediated inhibition and oxygen sensitivity increase with age on a similar time course and do not support a role for dopamine as a major mediator of carotid chemoreceptor resetting.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Coding Logic of Interoception;Annual Review of Physiology;2023-12-07

2. A role for dopamine in control of the hypoxic ventilatory response via D2 receptors in the zebrafish gill;Journal of Comparative Neurology;2023-10-14

3. Intra-carotid body inter-cellular communication;Journal of the Royal Society of New Zealand;2022-05-30

4. Neurogenic control of respiration;Introduction to Basic Aspects of the Autonomic Nervous System;2022

5. Neurobiology of the carotid body;Respiratory Neurobiology - Physiology and Clinical Disorders, Part I;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3