Affiliation:
1. Departments of Pediatrics and
2. Obstetrics and Gynecology, Harbor-University of California Los Angeles Research and Education Institute, Torrance, California 90502
Abstract
Intrauterine lung development, culminating in physiological pulmonary surfactant production by epithelial type II (TII) cells, is driven by fluid distension through unknown mechanisms. Differentiation of alveolar epithelial and mesenchymal cells is mediated by soluble factors like parathyroid hormone-related protein (PTHrP), a stretch-sensitive TII cell product. PTHrP stimulates pulmonary surfactant production by a paracrine feedback loop mediated by leptin, a soluble product of the mature lipofibroblast (LF). When LFs and TIIs are stretched in coculture, there is a fivefold increase in surfactant phospholipid synthesis that can be “neutralized” by inhibitors of PTHrP or leptin, implicating a paracrine feedback loop in this mechanism. Stretching LFs stimulates PTHrP binding (2.5-fold) and downstream stimulation of triglyceride uptake quantitatively (15–25%) due to upregulation of adipose differentiation-related protein expression. Stretching TII cells increases leptin stimulation of their surfactant phospholipid synthesis threefold, suggesting that retrograde signaling by leptin to TII cells is also stretch sensitive. We conclude that the effect of stretch on alveolar LF and TII differentiation is coordinated by PTHrP, leptin, and their receptors.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
121 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献