TAS2R activation promotes airway smooth muscle relaxation despite β2-adrenergic receptor tachyphylaxis

Author:

An Steven S.1,Wang Wayne C. H.2,Koziol-White Cynthia J.3,Ahn Kwangmi4,Lee Danielle Y.1,Kurten Richard C.5,Panettieri Reynold A.3,Liggett Stephen B.6

Affiliation:

1. Program in Respiratory Biology and Lung Disease, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland;

2. Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland;

3. Division of Pulmonary, Allergy and Critical Care, Airways Biology Initiative, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania;

4. National Institutes of Health, Bethesda, Maryland;

5. Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and

6. Personalized Medicine Institute, University of South Florida Morsani College of Medicine, Tampa, Florida

Abstract

Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca2+concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β2-adrenergic receptor (β2AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β2AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β2AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca2+concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β2AR desensitization by β-agonist amounted to 92 ± 6.0% ( P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% ( P < 0.001) desensitization of β2AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3