In vivo molecular imaging stratifies rats with different susceptibilities to hyperoxic acute lung injury

Author:

Audi Said H.123ORCID,Taheri Pardis12,Zhao Ming4,Hu Kurt23,Jacobs Elizabeth R.23ORCID,Clough Anne V.25

Affiliation:

1. Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin

2. Clement J. Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin

3. Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin

4. Department of Medicine, Northwestern University, Chicago, Illinois

5. Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin

Abstract

99mTc-hexamethylpropyleneamine oxime (HMPAO) and 99mTc-duramycin in vivo imaging detects pulmonary oxidative stress and cell death, respectively, in rats exposed to >95% O2 (hyperoxia) as a model of acute respiratory distress syndrome (ARDS). Preexposure to hyperoxia for 48 h followed by 24 h in room air (H-T) is protective against hyperoxia-induced lung injury. This study’s objective was to determine the ability of 99mTc-HMPAO and 99mTc-duramycin to track this protection and to elucidate underlying mechanisms. Rats were exposed to normoxia, hyperoxia for 60 h, H-T, or H-T followed by 60 h of hyperoxia (H-T + 60). Imaging was performed 20 min after intravenous injection of either 99mTc-HMPAO or 99mTc-duramycin. 99mTc-HMPAO and 99mTc-duramycin lung uptake was 200% and 167% greater ( P < 0.01) in hyperoxia compared with normoxia rats, respectively. On the other hand, uptake of 99mTc-HMPAO in H-T + 60 was 24% greater ( P < 0.01) than in H-T rats, but 99mTc-duramycin uptake was not significantly different ( P = 0.09). Lung wet-to-dry weight ratio, pleural effusion, endothelial filtration coefficient, and histological indices all showed evidence of protection and paralleled imaging results. Additional results indicate higher mitochondrial complex IV activity in H-T versus normoxia rats, suggesting that mitochondria of H-T lungs may be more tolerant of oxidative stress. A pattern of increasing lung uptake of 99mTc-HMPAO and 99mTc-duramycin correlates with advancing oxidative stress and cell death and worsening injury, whereas stable or decreasing 99mTc-HMPAO and stable 99mTc-duramycin reflects hyperoxia tolerance, suggesting the potential utility of molecular imaging for identifying at-risk hosts that are more or less susceptible to progressing to ARDS.

Funder

U.S. Department of Veterans Affairs

HHS | NIH | NHLBI | NHLBI Division of Intramural Research

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3