KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle

Author:

Bialecki R. A.1,Stinson-Fisher C.1

Affiliation:

1. Pulmonary Pharmacology Section, Biomedical Research Division, ZENECA Pharmaceuticals Group, Wilmington, Delaware 19897.

Abstract

Electrophysiological studies suggest that activation of large-conductance Ca-activated K channels (KCa) with nitric oxide (NO) causes hyperpolarization and relaxation of smooth muscle. We determined whether KCa blockers decreased relaxation to the NO donors S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholinosydonimine-hydrochloride (SIN-1) in isolated segments from main pulmonary artery (MPA), its left branch (LPA), aorta (Ao), carotid artery (CA), and trachea (Tr). NO donors caused concentration-dependent relaxation of tissues precontracted with histamine whereas the inactive carrier molecule C88–3934 was without effect. The rank order profiles of SNAP and SIN-1 sensitivity were CA = Ao = MPA > LPA = Tr. Compared with histamine, 80 mM KCl precontraction caused variable reductions in tissue sensitivity and maximum relaxation to SNAP. The KCa antagonists charybdotoxin, iberiotoxin, and tetraethylammonium decreased sensitivity to SNAP and SIN-1 2- to 11-fold in MPA, LPA, and Tr, with variable shifts in Ao and CA. The effect of iberiotoxin was not altered by removing the endothelium or epithelium. Furthermore, charybdotoxin or iberiotoxin did not alter basal or SNAP-stimulated guanosine 3',5'-cyclic monophosphate content. Glibenclamide, noxiustoxin, and leiurotoxin I, antagonists of ATP-dependent, delayed rectifier, and small-conductance KCa channels, respectively, had no effect. In conclusion, antagonists of KCa decrease NO donor-mediated relaxation of pulmonary arterial and tracheal smooth muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3