Author:
Leroy Claudie,Privé Anik,Bourret Jean-Charles,Berthiaume Yves,Ferraro Pasquale,Brochiero Emmanuelle
Abstract
In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027–L1037, 2004), we identified an ATP-sensitive K+(KATP) channel in alveolar epithelial cells, formed by inwardly rectifying K+channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of KATP, voltage-dependent K+channel KvLQT1, and calcium-activated K+(KCa) channel modulators modified Na+and Cl−currents in alveolar monolayers. In addition, it was shown previously that a KATPopener increased alveolar liquid clearance in human lungs by a mechanism possibly related to epithelial sodium channels (ENaC). We therefore hypothesized that prolonged treatment with K+channel modulators could induce a sustained regulation of ENaC activity and/or expression. Alveolar monolayers were treated for 24 h with inhibitors of KATP, KvLQT1, and KCachannels identified by PCR. Glibenclamide and clofilium (KATPand KvLQT1 inhibitors) strongly reduced basal transepithelial current, amiloride-sensitive Na+current, and forskolin-activated Cl−currents, whereas pinacidil, a KATPactivator, increased them. Interestingly, K+inhibitors or membrane depolarization (induced by valinomycin in high-K+medium) decreased α-, β-, and γ-ENaC and CFTR mRNA. α-ENaC and CFTR proteins also declined after glibenclamide or clofilium treatment. Conversely, pinacidil augmented ENaC and CFTR mRNAs and proteins. Since alveolar fluid transport was found to be driven, at least in part, by Na+transport through ENaC, we tested the impact of K+channel modulators on fluid absorption across alveolar monolayers. We found that glibenclamide and clofilium reduced fluid absorption to a level similar to that seen in the presence of amiloride, whereas pinacidil slightly enhanced it. Long-term regulation of ENaC and CFTR expression by K+channel activity could benefit patients with pulmonary diseases affecting ion transport and fluid clearance.
Publisher
American Physiological Society
Subject
Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献